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perturbation of the gyroscopic-force type. 
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Hamiltonian systems with two degrees of freedom are studied. One degree 
of freedom corresponds to rapid motion, and the other to slow motion. 

ON CROSSING A SEPARATRIX IN 
OF FREEDOM* 

The phase point intersects the separatrix of the rapid motion. Formulas 
are obtained for the change in the adiabatic invariant during this cross- 
ing. An example is solved, dealing with the change in the adiabatic 
invariant of an asteroid near the 3-l resonance with Jupiter. 

1. Formulation of the problem. A number of problems of the theory of oscillations 
lead to Hamiltonian systems with a Hamiltonian of the form II = H(p,q, y,x), where q, P,-~x are 
the coordinates, p, y the associated moments, e> 0 is a small parameter and HE Cm. The 
variables p, q will be called rapid, and y,x slow. The Hamiltonian system for P, q with 

(y, x) = const will be called rapid or unperturbed. The 
Hamiltonian of the type shown characterizes, e.g. the motion of 
an asteroid in the bounded three-body problem near a resonance. 

Below we assume that the phase plane of the rapid system 

@@ ...,,, 
contains the separatrices shown in Fig.1 for all values of the 
slow variables under cosideration. When the slow variables are 

the phase point intersects the separatrix. The motion 
away from the sepatrix is characterized by a quantity which is 

Fig.1 preserved with a high degree of accuracy, namely the adiabatic 
invariant (AI) /l/. The neighbourhood of the sepratrices 

*Prikl.Matem.Mekhan.,51,5,750-757,1987 
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represents a zone of non-adiabaticity , and the AI changes when passing through this zone. 
Asymptotic formulas describing this change are obtained in this paper, and a formula describing 
the change in the AI of a resonant asteroid is derived from them as a corollary. 

The change in the AI on crossing a separatrix was studied earlier in a Hamiltonian system 
with one degree of freedom, whose parameter varied smoothly with time. The Hamiltonian H= 

H @pP, et). The corresponding formula was obtained in /2, 3/, and for the special case of a 
pendulum in a smoothly varying gravitational field it was first obtained in /4/. 

2. The adiabatic approximation. Let I = I (H, Y, X) be the "action" variable /l/ 
of the rapid system for any region not containing the separatrices, and let @ (I, Y, 5) be 
the Hamiltonian Kexpressed in terms of I, Y, x* In the case of motion away from' the separat- 
rices at times. of the order of l/~, the quantity I remains constant with an accuracy of 
order of 0 (6) , and the variation in y, x is described by a Hamiltonian system with 
Hamiltonian &@(I, y,s), where y, x are conjugate variables, 1 = const (the slow system) 
The approximation is called adiabatic, and the "action" is I - AI. We have the useful 
identities a@/aa = <aHlaa>, a = Y,I, where the angle brackets denote averaging over the 
of the unperturbed motion. 

We shall call the following quantity the improved AI: 

J = J (p, q, y, 4 = 1 + EJl (P, q* Y, 4 

the 

/5/. 

phase 

(2.1) 

The integrals are taken along the phase trajectory of the rapid system passing through 
the point (p, q), t, u is the time of motion measured from the instant of passage through this 
point, and T is the period. The quantity J represents the improved first approximation in 
the method of averaging /6/. In the case of motion away from the separatrices, at times of 
the order of lie, the quanity J will remain constant to within o(ca). 

The formula (2.1) can be obtained as follows. In the rapid system the action-angle 
variables I,~mmodZn are introduced by a symplectic change of variables, with the generating 
function W(I,q,y,z). In the complete system we carry out the symplectic change of variables 
P.9.Y. E_'X++ I, @,.ii, E-12 with the generating function E-ILIZ + w (I, q,g,z). In the new variables 
the Hamiltonian takes the form 

F = Q, (I, 8, 2) + eF, (I, B, II, s) + 0 (~'1 
a@ arv aH aW 

h=--,,,,f,,,, 

(2.2) 

The angle cp is measured from any straight line q= const. 
In order to obtain the improved AI, we carry out the symplectic change of variables 

i, q?, 5, E-Q++ J,$, Y, &-lX’, which is nearly identical and such that the Hamiltonian expressed in 
the new variables contains the phase Q only in terms of order ~2. ThevalueofJisdetermined, 
to within to terms of order 9, bythe formula 

Fz - (Fl> JiI+eu(p,q,y,r),u=__-_~ 

The function u is invariant with respect to the choice of the point on the unperturbed 
trajectory from which the angle 'p is measured. We can therefore assume that 'p is measured 
fromthepoint (p,q). Then we have 

substituting here awlaz, awlag from (2.2) and carrying out identical transformations, 
we obtain (2.1). 

3. Passage across the separatrix in the adiabatic approximation. The phase 
pattern of the rapidsystem (Fig.11 shows that the separatrices 1, and I, dividing the plane 
into the regions Gi = Gi (y, x), i =.I, 2, 3,, pass through the non-degenerate singular saddle 
point C. Let us denote by hc = &(Y, x) the value of the Hamiltonian H at the point C, E = 
E(p,q, y,x) = H - &, Si = S,(y,r) are the areas of the regions Gi,i = 1,2,S, = S, + S,, @,(I/,s) 
= {Si, hc}. Here and henceforth { , ) are the Poisson brackets of the functions y,x:{f,g} = 

L'g, - fy'gx'. 
The quantity e8; (y,z?) is the rate of change of the area Si (y, 5) in the adiabatic 
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approximation, in the limit when the phase point in the region Gi approaches the separatrix. 
Below we assume that ei (Y,s) > const> 0 in the domain of variation of Y, r. In this case 
we find that in the adiabatic approximation the phase points of G, may reach the separatrix 
in a finite slow time et, and in the regions G,and &they can leave the separatrix (since 
the "action" I (H, y,x) is the area divided by Zn, bounded by the phase trajectory, and 
1 = con& in the adiabatic approximation). 

The change in 1, Y, r can be described in an approximate manner using the following 
scheme /7/. Let the motion begin at t = 0, from the point 111, (pO, qo, Y,, x,), and (PO, 40) E 
G, (Y,, 4. In the region G, the AI is assumed constant until it reaches the separatrix: 
I(H, y,z) = 1- = conat. The variation in Y,x is described by the solution Y,(T), X,(r), T = 
et of the slow system with the Hamiltonian a@ (I-, y,r) and initial conditions (Y,, 4. The 
instant t, of reaching the separatrix is found from the relation s, (Y, (r*), x, (z*)) = 2Yd-, 
7 * = et,. The quantities y, = Y,(r,), x* = X3@,) can be determined by solving the system of 
equations S,(Y,, x+) =2x1-, hc (Y,, z*) = H (~0, 40, Y,, ~0) 

After crossing the separatrix the point can continue its motion either in the region G,, 
or in Gz. During its motion in Gi, i = I,2 the adiabatic invariant is again assumed constant 
I = Si (Ye, t*)/ (2n). The change of the slow variables is described by the solutionYi(t), X1 (7) 
constructed for the region Gi of the slow system with initial condition Y, (T,) = Y,, Xi (t,) = 
r** 

‘When e is small, the initial conditions in G, corresponding to the captures in G, and 
G, are very scrambled, therefore a capture by one or another region must be regarded as a 
random phenomenon. For the point M, the probability Pi of capture by the region Gi, i = I,2 
is defined as the fraction of the phase volume of the smooth neighbourhood of the point M, 
trapped in G1 in the limit as e-+0, and the size of the neighbourhood 6 -0, e<6 /5/ 
(first taken with respect to E, and then with respect to 6). The probability is given by 
the formula 

pi = 81 (Y*, r*)i@, (Y*,X*), i == 1, 2 

It was shown earlier*(*Neishtadt A.I. Gn certain resonance problems in non-linear systems. 
Candidate Dissertation, Moscow State University, 1976.) that the relations written for I, et,, 

Y? x hold for the majority of initial conditions with an accuracy of O(elne) either for 
i = 1, or for i=2. The sole set of initial conditions for which the above estimates do not 
hold, has a measure 0 (Ed), where n > 1 is any number specified in advance. (In analytic 
systems the sole set has a measure of O(exp (-C/E)), c = const>o.) 

4. Asymptotic expansions for the rapid motion near the separatrices. The 
asymptotic expansions given above are analogous to the corresponding expansions from /2/, 
where a, bi, di are smooth functions of Y,x. we shall assume, to be specific, that E> 0 
in the region G,, E<O in the regions G, and G,. 

A. The following relations hold for the trajectory .?3 = h, lying within the region Gi, i 
= 1, 2, 3 : 

T = -~i In 1 h I + bi + 0 (h In 1 h I), (I~ = U, = a, as = 2a, 

bg = b, i- b, 
(4.1) 

2nI = Si - aih In 1 h 1 + (b, + a# + 0 (hZ In [ h I) 

E=h-$dt=-~+O(hln/hI). $ a=y,x 

i,(s),,,d"=-a%+ aO(hInlhl) 

In the last of the above formulas a derivative of the function E appears in the integrand 
by virtue of the complete initial system. 

B. In order to obtain the asymptotic expansions it is convenient to rewrite the function 
u in (2.1) in the form 

Let Cq6 be the system of principal coordinates for the saddle point C (Fig.1). If the 

point (p, q) lies in the region Gi, i = I,2 near C on the Gn axis, then the following ex- 
pansion will hold for the function u: 
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2nu = dt + 0 (1/I h I In I h I), h = E (P, q, Y, 4 

If the point (p,q) lies in the region Gs, near C on the positive part of the Cc axis, 

then 

L-w = ‘/,a (8, - 0,) In h + 1/a C&b, - O,b,) + 1/z {S,, s,} + 
d, + 0 (1/ZInh), a, = a, _t. a, 

(4.2) 

5. Computing the change in the AI. Away from the separatrices, the improved AI 
changes only by an amount of the order of O(E~). Therefore, a change of the order of e or 
less accumulates in the small neighbourhood of the separatrices , and the asymptotic expansions 
used in Sect.4 can by employed to calculate it. The arguments used follow, basically, those 
of /2/. 

Let the phase point begin to move at t = 0 in the region G,,and let this point lie, 
when T = 'c', in the region Gt, i = 1 or i=2, with I=I+, J = J+. we denote by z*, g+, 
x,the values calculated in the adiabatic approximation of Sect.3, of the slow time and slow 
variables on reaching the separatrix (we assume that T*<T+); t,- is the instant of time at 
which the phase point arrives at the positive ray of the Cg axis for the last time near the 
saddle point 8; t*+ at the instant of time at which the phase point arrives at the Cq axis 
for the first time near the saddle point C; h,*t, J,*, Y,*, x** are the values of E,J,Y,r 
on the trajectory when t = t,f; % = h,-/(E@,), Ei = { h ,+ I/(E@,). 

Here 0, (and henceforth a, bj, dj, i?S,lax, &Sj/ay, j = 1, 2, 3) are determined at x = I*, y = 

Y** We assume that the initial point does not belong to the exlusive set with a small measure 
for which the estimates of Sect.3 do not hold. Therefore et+* = t* + 0 (8 In e). 

The aim of subsequent discussion is to express, in the principal app@oximation, J+ in 
terms of J- and Ei. 

5.1. Approaching the separatrix. when 0 < t -< t*- , the projection of the phase point 
on the p, q plane describes loops close to the unperturbed trajectories. It can be confirmed 
that during the motion in the region E> h> E the quantity J changes by an amount of the 
order of 0(9/h). In particular in the region E<1/31 In e 1 J varies by an amount of the order 
of 0 (E'/' In e). After reaching the regionO< E<l/c/l In e 1, we determine the instances of 
consecutive intersections of the ray Cc near the point C by the moving point. We shall 
assign consecutive numbers to these instances, beginning with the last: t,- = t, > t, > . . . > 

We will denote the values of E, T, I, J, Y, x and t = t, 
where k> 0 is a sufficiently large constant, 

by ,h,, ~nr I,, Jn, Y,, 5,. 
then the following formulas hold: 

h,+,=kl +el@, +o(l/hn+l)l, 'C,+l=,cn + 

e ['/,a In&, + a In@,, + O,e) + l/zalnh,+l - b, + O(l/hn+l)l 
(5.1) 

4 (Ym 4 = s, (Yov x0) + 0, (T, - To) + 

0 (hi+, In2 &+I) f 0 (E 1/7E;;;;) 
45.2) 

We write the changeinthe improved AI in the form J*- - J- = (J,- - JN) -I- (JN - J-). The 
second term is of the order of O(&lne). In computing the first term we use expansions (4.1) 
and (4.2) for JN, J,-. The quantities hN, 88 (YN, XN) appearing in the expansion for JN are 
obtained using (5.1). The manipulations are the same as those in /2/, and lead to the follow- 
ing result (P_(.) is a gamma function): 

2n (J; - J-) = 2ea@, I--'/, In {251 [r (%)r (% + 13,,)]-~} + 
% + (-5 + '/.#.& In %I + 0 (e"h In e), Oil = @,/@I 

(5.3) 

The estimation of the residual term is much better than in the intermediate formulas when 
E = h,. This is due to the fact that the residual terms in asymptotic expansions are connected 
by relations ensuring adiabatic invariance for large h. The derivation of the residue term is 
time consuming and is omitted here, as in /2/. 

Formula (5.3) enables us to obtain, in the principal approximation, a relation connecting 
si (y*-, I*-), J-, 5 (i = 1, 2), which is needed in what follows. Indeed, the following relations 
hold: 

Sj(y*-, “*-)-Sj(Y*t ‘*)=$(Y*--Y*) + $$(z*--z*) + 

O(e*lnae) 
15.4) 

(ye-- y,)-2(x,-- 5*) + 0(e21nae) 
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The last relation follows fromthedefinition of y*,z, and the energy integral: H =- 1~~ 

(YW x*). Regarding the first relation of (5.4) for j = 3 and the second relation as a linear 
system in Y,- -Y,, x*- - x,, solving it and substituting the result into the first relation 
for j = 1,2, we can obtain 

The expansions in Sect.4 make it possible to express s, (Y*_l 2*-) in terms of J*_, 5; 
formula (5.3) gives J,- in terms of J-, 6, and therefore (5.5) enables us to express s,(Y;, 

x*-f in terms of J-, %. 

5.2. Passage across the separatrix. Estimates show that 5 E (o,i i- kf/q. If E E (kJ&, 

023 -$l/& then after the passage across the separatrix the point becomes trapped in Gz, 

while if 8 +Z(& + kl/z, 1 --k(c) it is trapped in 4. To be specific, we shall consider the 
first case. When t.+-< t < t*+, the projection of the phase point on the .P,Q plane will 
describe a curve near the separatrix 1,. The following relations hold: 

3E*+ = h, - e,e + 0 (E*q 

t*” = t,- - ‘/,a In h,+ - i/,a In 1 h,- 1 + b, + 0 (e W e) 

$2 (Ye+* 5*+) = s, (Y*_, t*_) + O*E (t*+ - t*-) + 0 (82) 

The relations together with the expansions of Sect.4, enable us to express J,+, 5 in 

terms of & (Al*-, h-h Ez. 

in 
5,3. Moving away 

the region Gi, i = 

slow 

We note 
motion. 

separatfix. 

obtain 
Applying the arguments of Sect.5.1 to the motion 

2n (J+ - J*+) = (5.6) 
EaOi [--ln (1/%/r (%i)) + St + (‘/a - %i) lh EiI + 
0 (&” lh E) 

that formulas (5.3) and (5.6) hold for any number of degrees of freedom of 

5.4. The final formla. In Sect.5.3 the quantity J' is expressed in terms of J*+r %i* 
The formulas of Sect.5.2 enable us to ,express J*+, E in terms of SI(y*-,s,-), Et. The formulas 
in Sect.5.1 enable us to express Si (Yrl x*-j in terms of J-,E. As a result'we can express J+ 
in terms of J-, &. When the region Ct is reached, we have, provided that kT/e< 5, < 1 - k)/F, 

2nJ' = Sf @*t 5*) -t- 813 (2xJ' - s, {Y*, 5*)) + (5.3 
E&i (5~ - ‘/J(lO (IS@,) - 2ei, 1Il (f&J) - 

The quantity Et 6?(0,1) is a function of the initial conditions, whose value can be 
changed by an amount of the order of unity, by changing the arguments by a small amount of the 
order of e. Therefore, it is best to treat Ei as a random quantity. For a given initial 
point M,,(p,, q,,, y,, s,) l2xe probability that Et E (a, fl)r‘ (0, 1) is, by definition, 

p!% I), 
1 _. lim~-olim,,mesU~;a~/mesUa,i 

where Ub,i is the set of points in the &neighbourhood of M,entrapped within the region 
Gr, Ci&,i'*'bj is a set of points from lJ&,i for Which Et EZ(a.~),mes(+) is the phase volume. 
It can be shown that PtLaJ3) = fi-- a,i.e. the distribution Et is uniform on (0, 1). The quantity 
f* is also treated as random, and formula (5.ff determines its conditional distribution under 
the condition that the point is entrapped in the regian Gi. 

If the initial and final point of the trajectory axe chosen so that a=0 at these 
points, we can replace Jh in (5.71 by I*, while the second term on the right-hand side of 
(5.7) vanishes. 

5.5. Fomulas for describing the change in the AI duxing other passages. We have assumed 
above that e1>o,8,)o. When e have different signs, we have other, different passages 
between the regions. fn particular, let 8,>0,8,(0,8,>0. Then the points from the regions 
4 and Gs arrive at the region G, with a probability of 1, The change in J during the passage 
from &to G, is given by formula (5.71, and kfE< El <:esl - kvg The change in J during the 
passage from GI to G, is given, for kl/o<&<l -kfi, by the formula 



2nJ+ = Sl (Y*, 4 + era WJ- - s, (Y*, z,)) + ea (1 - &J . 
(&la (ES,) - 8, In 1 ee, I) - eae, In {2n (1 - En). 

v/e;; K a4 r PSl - e,,w’) + e (1 - 52) (B,b, - 8,b,) + 

8 (4 - %n4) - e (1 - e,, {S,, S,) + 0 (8”’ ( I In 8 I + (1 - En)-?)), 
i, = h,-48w 
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(5.8) 

Here h,- is the value of the function E during the last arrival at the CT, axis in the 
region G* near the saddle point C. 

The formulas for the remaining versions of the passage are obtained from (5.7) and (5.8) 
by changing the directions, the time and numbering of the regions. The method of deriving 
formula (5.7) used here is quite general, and can be used to find the change in the AI for 
other types of phase patterns divided into regions by the separatrices. The essential 
assumptions here are that the saddle singularities are non-degenerate and that the rates of 
change of the regions in the adiabatic approximation are non-Zero. 

6. Example. The Hamiltonian of the bounded, plane elliptic three-body problem (the Sun, 
Jupiter,andan asteroid) near the 3:l resonance, averaged over the longitudes of Jupiter and 
theasteroid,taking the above resonance into account, was reduced in /8/, in the principal 
approximation, to the form 

H = ‘i,ap* - A (x, y)cos (q - 0 (5, ~1) - B (I, Y) 16.1) 

Here p, y, q, EC% are the canonical variables , q is the mean longitude of the asteroid 
minus and triple mean longitude of Jupiter, 

E=1/T,V 

x and -Yare proportional to the components of the 
Laplace vector for the asteroid, is the ratio of the masses of Jupiter and the Sun, 
a = const> 0, the functions A, B are even in y and Q is odd in y, and A > 0. 

The rapid system for (6.1) is a pendulum and the separatrices divide its phase pattern 
intotheregions of forward rotation G,, reverse rotation G,, and oscillations G,. The phase 
pattern of the slow system at the energy levels H= T has, according to /8/, for some range 

Fig.2 

ofvaluesof r, the form shown in Fig.2. The thick line shows 
the curve L = (2,~: h, (y.z)= r}. hC = A -B corresponding to the 
separatrices and called in /0/ the indeterminacy curve. The 
curve separates the regions of the z,y, plane onto which the 
parts of the energy level corresponding to the regions G,,, 
and G, project naturally; here G1 and G, project on the same 
finite region. The trajectories of the slow system outside L 

are represented by the lines I(h,y,s)= coast. The function I 
becomes discontinuous on L, while the trajectories remain 
continuous. On reaching L the transitions from G, into G, 
and G, are equally probable. A saddle singularity exists in 
the phase pattern of the slow system. One of the separatrices 
passing through it intersects L. The region I in the phase 
pattern is filled with slow trajectories intersecting L. 

Applying the procedure of Sect.5 to the Hamiltonian (6.1), 
we see that the change in the improved AI during the passage 
from 68 to Gf (i = 1, 2) is given by the formula (5.7), in 

which we must put S1 = S, = VzS (y, x), 8, = 8, = II2 {S,&}, b, = b,,d, = -d, = d(S= S(y,x) is 
the area of the region of oscillations for the pendulum). 

Calculations lead to the formula 

2nJ+ = nJ_ - EC& In (2 sin (~~51)) - (-1)'ed + 
0 (C/Q (I In e 1 + (1 - Ei)-I)), i = 1, 2 

,(6.2) 

1 
a=- 

faT ’ 
@=-&{B, A}, d=+{B,Q) 

The coefficients a, 8, d are calculated at the point (z,, Y*) at which the trajectory 
of the slow system reaches the curve L, si is a quantity introduced in 5.4 and regarded as 
a random quantity uniformly distributed over the segment (0,2). In passing from (5.7) to 
(6.2), we used the complementing and doubling formulas for the gamma function. 

The change in J during the passage from Gi to G, is given by formula (6.2), in which 
we must interchange the plus and minus signs and replace 8 by -9. Therefore, the phase 
point, having emerged from G,, passed through GI and returned to G,, obtains the following 
increment in the improved AI: 

AJkGIn sinnS, y + O(s'/l (I In B 1 + (1 -Z&-l + (1 - &')-I)) 

The coefficients a, 0 are calculated at the point (x,, y,) of emergence on the curve of 
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indeterminacy using the passage from G, to Gi; j,, and fi' are the quantities ji introduced 
in Sect.5.4 for the passages from G,to Gi and from Gi to G, respectively. We take into 
account the fact that these two passages take place at the points of the z,y planesymmetrical 
with respect to the axis y=O, and the values of ~(7 at these points have different signs, 
while the values of d are the same. In the limit, as e--t 0, the quantities gi and :i' are 
regarded as random and uniformly distributed over the segment (8, I), and it can be shown that 
they are independent. Also, as a-+0, the quantity e-‘AJ is regarded as random and formula 
(6.3) yields its distribution law. According to (6.3) the quantity has zero mean and variance 

c2=2a2@2n-a Sflna(2sinn~)d~~0,17az~* 
II 

In the case of multiple passages across the separatrix the summation of the quasirandom 
changes in the AI results in diffusion, discovered in /8/ by numerical integration. Although 
in the course of diffusion the projection of the phase point onto the plane of slow variables 
intersects the separatrix of slow motion , the nature of the slow motion changes sharply. In 
particular, for the real parameters of the sun-Jupiter system the eccentricity of the asteroid 
can increase from values less than 0.1 to about 0.4 for which the asteroid will intersect the 
orbit of Mars. The perturbing influence of Mars ejects such asteroids from the main belt. 
According to /8/ a gap forms in the distribution of the asteroids , close to the observed 
Kirkwood gap at the 3:l resonance. 

There is no rigorous theory of the diffusion of the AI. It is probable thatthe small 
neighbourhood of the initial point spreads out due to diffusion over the region Z over the 
N-E-%~-"Z~,~, passage across the separatrix, and this requires a time of fL - E-%~,-~I~~%~. 

Here I, is the change in I along L, and sL,zL are the characteristic values of the 
variance .UI and of the slow time interval between the passages. The quantity tL in theory 
/8/ is identical with the characteristic time of formation of the gap in the distribution of 
the asteroids. In the case of real parameters of the Sun-Jupiter system, we find that f,- 
105 - 108 years, and this agrees, in order of magnitude, with the results of numerical inte- 
gration given in /8/. 
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